
574 Chapter 8 Sequential Logic Design Practices

DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY

Copyright © 1999 by John F. Wakerly Copying Prohibited

High pin-count surface-mount packaging supports even wider registers,
drivers, and transceivers. Most common are 16-bit devices, but there are also
devices with 18 bits (for byte parity) and 32 bits. Also, the larger packages can
offer more control functions, such as clear, clock enable, multiple output
enables, and even a choice of latching vs. registered behavior all in one device.

8.2.6 Registers and Latches in ABEL and PLDs
As we showed in Section 7.11, registers are very easy to specify in ABEL. For
example, Table 7-33 on page 541 showed an ABEL program for an 8-bit register
with enable. Obviously, ABEL allows the functions performed at the D inputs of
register to be customized in almost any way desired, limited only by the number
of inputs and product terms in the targeted PLD. We describe sequential PLDs
in Section 8.3.

With most sequential PLDs, few if any customizations can be applied to a
register’s clock input (e.g, polarity choice) or to the asynchronous inputs (e.g.,
different preset conditions for different bits). However, ABEL does provide
appropriate syntax to apply these customizations in devices that support them, as
described in Section 7.11.1.

Very few PLDs have latches built in; edge-triggered registers are much
more common, and generally more useful. However, you can also synthesize a
latch using combinational logic and feedback. For example, the excitation equa-
tion for an S-R latch is

Thus, you could build an S-R latch using one combinational output of a PLD,
using the ABEL equation “Q = S # !R & Q.” Furthermore, the S and R signals
above could be replaced with more complex logic functions of the PLD’s inputs,
limited only by the availability of product terms (seven per output in a 16V8C
or 16L8) to realize the final excitation equation. The feedback loop can be
created only when Q is assigned to a bidirectional pin (in a 16V8C or 16L8, pins
IO2–IO7, not O1 or O8). Also, the output pin must be continuously output-
enabled; otherwise, the feedback loop would be broken and the latch’s state lost.

Probably the handiest latch to build out of a combinational PLD is a D
latch. The basic excitation equation for a D latch is

However, we showed in Section 7.10.1 that this equation contains a static haz-
ard, and the corresponding circuit does not latch data reliably. To build a reliable
D latch, we must include a consensus term in the excitation equation:

The D input in this equation may be replaced with a more complicated expres-
sion, but the equation’s structure remains the same:

Q∗ = S + R′ ⋅ Q

Q∗ = C ⋅ D + C′ ⋅ Q

Q∗ = C ⋅ D + C′ ⋅ Q + D ⋅ Q

Q∗ = C ⋅ expression+ C′ ⋅ Q + expression⋅ Q

Section 8.2 Latches and Flip-Flops 575

DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY

Copyright © 1999 by John F. Wakerly Copying Prohibited

It is also possible to use a more complex expression for the C input, as we
showed in Section 7.10.1. In any case, it is very important for the consensus term
to be included in the PLD realization. The compiler can work against you in this
case, since its minimization step will find that the consensus term is redundant
and remove it.

Some versions of the ABEL compiler let you prevent elimination of
consensus terms by including a keyword “retain” in the property list of the
istype declaration for any output which is not to be minimized. In other
versions, your only choice is to turn off minimization for the entire design.

Probably the most common use of a PLD-based latch is to simultaneously
decode and latch addresses in order to select memory and I/O devices in micro-
processor systems. Figure 8-14 is a timing diagram for this function in a typical
system. The microprocessor selects a device and a location within the device by
placing an address on its address bus (ABUS) and asserting an “address valid”
signal (AVALID). A short time later, it asserts a read signal (READ_L), and the
selected device responds by placing data on the data bus (DBUS).

Notice that the address does not stay valid on ABUS for the entire opera-
tion. The microprocessor bus protocol expects the address to be latched using
AVALID as an enable, then decoded, as shown in Figure 8-15. The decoder
selects different devices to be enabled or “chip-selected” according to the high-
order bits of the address (the 12 high-order bits in this example). The low-order
bits are used to address individual locations of a selected device.

retain property

ROMCS_L

AVALID

ABUS ADDR1 ADDR2

READ_L

DBUS DATA1 DATA2

from ROM from a different device

Figure 8-14
Timing diagram for a
microprocessor read
operation.

32-bit latch

ABUS[31:0]

G

D[31:0]

Q[31:20]

Q[19:0]

decoder

to device
address
inputs

to individual
device
chip-select
inputs

AVALID

Figure 8-15
Microprocessor
address latching and
decoding circuit.

576 Chapter 8 Sequential Logic Design Practices

DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY

Copyright © 1999 by John F. Wakerly Copying Prohibited

Using a PLD, the latching and decoding functions for the high-order bits
can be combined into a single device, yielding the block diagram in Figure 8-16.
Compared with Figure 8-15, the “latching decoder” saves devices and pins, and
may produce a valid chip-select output more quickly (see Exercise 8.1).

Table 8-2 is an ABEL program for the latching decoder. Since it operates
on only the high-order bits ABUS[31..20], it can decode addresses only in
1-Mbyte or larger chunks (220 = 1M). A read-only memory (ROM) is located
in the highest 1-Mbyte chunk, addresses 0xfff00000–0xffffffff, and is
selected by ROMCS. Three 16-Mbyte banks of read/write memory (RAM) are
located at lower addresses, starting at addresses 0x00000000, 0x00100000, and
0x00200000, respectively. Notice how don’t-cares are used in the definitions of
the RAM bank address ranges to decode a chunk larger than 1 Mbyte. Other
approaches to these definitions are also possible (e.g., see Exercise 8.2).

The equations in Table 8-2 for the chip-select outputs follow the D-latch
template that we gave on page 574. The expressions that select a device, such as
“ABUS==ROM,” each generate a single product term, and each equation generates
three product terms. Notice the use of the “retain” property in the pin declara-
tions to prevent the compiler from optimizing away the consensus terms.

WHY A LATCH? The microprocessor bus protocol in Figure 8-14 raises several questions:

• Why not keep the address valid on ABUS for the entire operation? In a real
system using this protocol, the functions of ABUS and DBUS are combined
(multiplexed) onto one three-state bus to save pins and wires.

• Why not use AVALID as the clock input to a positive-edge-triggered register to
capture the address? There isn’t enough setup time; in a real system, the address
may first be valid at or slightly after the rising edge of AVALID.

• OK, so why not use AVALID to clock a negative-edge-triggered register? This
works, but the latched outputs are available sooner; valid values on ABUS flow
through a latch immediately, without waiting for the falling clock edge. This
relaxes the access-time requirements of memories and other devices drvien by
the latched outputs.

20-bit latch

ABUS[19:0]

G

D[19:0]

ABUS[31:20]

Q[19:0]

latching
decoder

to device
address
inputs

to individual
device
chip-select
inputs

AVALID

G

Figure 8-16
Using a combined
address latching and
decoding circuit.

Section 8.2 Latches and Flip-Flops 577

DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY

Copyright © 1999 by John F. Wakerly Copying Prohibited

After seeing how easy it is to build S-R and D latches using combinational
PLDs, you might be tempted to go further and try to build an edge-triggered D
flip-flop. Although this is possible, it is expensive because an edge-triggered
flip-flop has four internal states and thus two feedback loops, consuming two
PLD outputs. Furthermore, the setup and hold times and propagation delays of
such a flip-flop would be quite poor compared to those of a discrete flip-flop in
the same technology. Finally, as we discussed in Section 7.10.6, the flow tables
of all edge-triggered flip-flops contain essential hazards, which can be masked
only by controlling path delays, difficult in a PLD-based design.

8.2.7 Registers and Latches in VHDL
Register and latch circuits can be specified using structural VHDL. For example,
Table 8-3 is a structural VHDL program corresponding to the D latch circuit of
Figure 7-12 on page 441. However, writing structural programs is not really our
motivation for using VHDL; our goal is to use behavioral programs to model the
operation of circuits more intuitively.

Table 8-4 is a process-based behavioral architecture for the D latch that
requires, in effect, just one line of code to describe the latch’s behavior. Note that
the VHDL compiler “infers” a latch from this description—since the code

module latchdec
title 'Latching Microprocessor Address Decoder'

" Inputs
AVALID, ABUS31..ABUS20 pin;
" Latched and decoded outputs
ROMCS, RAMCS0, RAMCS1, RAMCS2 pin istype 'com,retain';

ABUS = [ABUS31..ABUS20];
ROM = ^hFFF;
RAMBANK0 = [0,0,0,0,0,0,0,0,.X.,.X.,.X.,.X.];
RAMBANK1 = [0,0,0,0,0,0,0,1,.X.,.X.,.X.,.X.];
RAMBANK2 = [0,0,0,0,0,0,1,0,.X.,.X.,.X.,.X.];

equations

ROMCS = AVALID & (ABUS==ROM) # !AVALID & ROMCS
 # (ABUS==ROM) & ROMCS;
RAMCS0 = AVALID & (ABUS==RAMBANK0) # !AVALID & RAMCS0
 # (ABUS==RAMBANK0) & RAMCS0;
RAMCS1 = AVALID & (ABUS==RAMBANK1) # !AVALID & RAMCS1
 # (ABUS==RAMBANK1) & RAMCS1;
RAMCS2 = AVALID & (ABUS==RAMBANK2) # !AVALID & RAMCS2
 # (ABUS==RAMBANK2) & RAMCS2;

end latchdec

Ta b l e 8 - 2
ABEL program
for a latching
address decoder.

578 Chapter 8 Sequential Logic Design Practices

DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY

Copyright © 1999 by John F. Wakerly Copying Prohibited

doesn’t say what to do if C is not 1, the compiler creates an inferred latch to
retain the value of Q between process invocations. In general, a VHDL compiler
infers a latch for a signal that is assigned a value in an if or case statement if not
all input combinations are accounted for.

In order to describe edge-triggered behavior of flip-flops, we need to use
one of VHDL’s predefined signal attributes, the event attribute. If “SIG” is a
signal name, then the construction “SIG'event” returns the value true at any
delta time when SIG changes from one value to another, and false otherwise.

Using the event attribute, we can model a positive-edge triggered flip-flop
as shown in Table 8-6. In the IF statement, “CLK'event” returns true on any
clock edge, and “CLK='1'” ensures that D is assigned to Q only on a rising edge.
Note that the process sensitivity list includes only CLK; changes on D at other
times are not relevant in this functional model.

Ta b l e 8 - 3 VHDL structural program for the D latch in Figure 7-12.

library IEEE;
use IEEE.std_logic_1164.all;

entity Vdlatch is
 port (D, C: in STD_LOGIC;
 Q, QN: buffer STD_LOGIC);
end Vdlatch;

architecture Vdlatch_s of Vdlatch is
 signal DN, SN, RN: STD_LOGIC;
 component inv port (I: in STD_LOGIC; O: out STD_LOGIC); end component;
 component nand2b port (I0, I1: in STD_LOGIC; O: buffer STD_LOGIC); end component;
begin
 U1: inv port map (D,DN);
 U2: nand2b port map (D,C,SN);
 U3: nand2b port map (C,DN,RN);
 U4: nand2b port map (SN,QN,Q);
 U5: nand2b port map (Q,RN,QN);
end Vdlatch_s;

Ta b l e 8 - 4 VHDL behavioral architecture for a D latch.

architecture Vdlatch_b of Vdlatch is
begin
process(C, D, Q)
 begin
 if (C='1') then Q <= D; end if;
 QN <= not Q;
 end process;
end Vdlatch_b;

inferred latch

event attribute

Section 8.2 Latches and Flip-Flops 579

DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY

Copyright © 1999 by John F. Wakerly Copying Prohibited

Ta b l e 8 - 5 Alternative VHDL structural program for the D latch in Figure 7-12.

library IEEE;
use IEEE.std_logic_1164.all;

entity Vdlatch is
 port (D, C: in STD_LOGIC;
 Q, QN: out STD_LOGIC);
end Vdlatch;

architecture Vdlatch_s2 of Vdlatch is
 signal DN, SN, RN, IQ, IQN: STD_LOGIC;
 component inv port (I: in STD_LOGIC; O: out STD_LOGIC); end component;
 component nand2 port (I0, I1: in STD_LOGIC; O: out STD_LOGIC); end component;
begin
 U1: inv port map (D,DN);
 U2: nand2 port map (D,C,SN);
 U3: nand2 port map (C,DN,RN);
 U4: nand2 port map (SN,IQN,IQ);
 U5: nand2 port map (IQ,RN,IQN);
 Q <= IQ; QN <= IQN;
end Vdlatch_s2;

Ta b l e 8 - 6 VHDL behavioral model of an edge-triggered D flip-flop.

library IEEE;
use IEEE.std_logic_1164.all;

entity Vdff is
 port (D, CLK: in STD_LOGIC;
 Q: out STD_LOGIC);
end Vdff;

architecture Vdff_b of Vdff is
begin
process(CLK)
 begin
 if (CLK'event and CLK='1') then Q <= D; end if;
 end process;
end Vdff_b;

BUFFS ‘N’ STUFF Note that in Table 8-3 we defined the type of Q and QN to be buffer rather than out,
since these signals are used as inputs as well as outputs in the architecture definition.
Then we had to define a special 2-input NAND gate nand2b with output type buffer,
to avoid having a type mismatch (out vs. buffer) in the component instantiations
for U4 and U5. Alternatively, we could have used internal signals to get around the
problem as shown in Table 8-5. As you know by now, VHDL has many different
ways to express the same thing.

580 Chapter 8 Sequential Logic Design Practices

DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY

Copyright © 1999 by John F. Wakerly Copying Prohibited

Ta b l e 8 - 7 VHDL model of a 74x74-like D flip-flop with preset and clear.

library IEEE;
use IEEE.std_logic_1164.all;

entity Vdff74 is
 port (D, CLK, PR_L, CLR_L: in STD_LOGIC;
 Q, QN: out STD_LOGIC);
end Vdff74;

architecture Vdff74_b of Vdff74 is
signal PR, CLR: STD_LOGIC;
begin
process(CLR_L, CLR, PR_L, PR, CLK)
 begin
 PR <= not PR_L; CLR <= not CLR_L;
 if (CLR and PR) = '1' then Q <= '0'; QN <= '0';
 elsif CLR = '1' then Q <= '0'; QN <= '1';
 elsif PR = '1' then Q <= '1'; QN <= '0';
 elsif (CLK'event and CLK='1') then Q <= D; QN <= not D;
 end if;
 end process;
end Vdff74_b;

Ta b l e 8 - 8 VHDL model of a 16-bit register with many features.

library IEEE;
use IEEE.std_logic_1164.all;

entity Vreg16 is
 port (CLK, CLKEN, OE_L, CLR_L: in STD_LOGIC;
 D: in STD_LOGIC_VECTOR(1 to 16); -- Input bus
 Q: out STD_ULOGIC_VECTOR (1 to 16)); -- Output bus (three-state)
end Vreg16;

architecture Vreg16 of Vreg16 is
signal CLR, OE: STD_LOGIC; -- active-high versions of signals
signal IQ: STD_LOGIC_VECTOR(1 to 16); -- internal Q signals
begin
process(CLK, CLR_L, CLR, OE_L, OE, IQ)
 begin
 CLR <= not CLR_L; OE <= not OE_L;
 if (CLR = '1') then IQ <= (others => '0');
 elsif (CLK'event and CLK='1') then
 if (CLKEN='1') then IQ <= D; end if;
 end if;
 if OE = '1' then Q <= To_StdULogicVector(IQ);
 else Q <= (others => 'Z'); end if;
 end process;
end Vreg16;

Section 8.3 Sequential PLDs 581

DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY
DO NOT COPY

Copyright © 1999 by John F. Wakerly Copying Prohibited

The D-flip-flop model can be augmented to include asynchronous inputs
and a complemented output as in the 74x74 discrete flip-flop, as shown in
Table 8-7. This more detailed functional model shows the non-complementary
behavior of the Q and QN outputs when preset and clear are asserted simul-
taneously. However, it does not include timing behavior such as propagation
delay and setup and hold times, which are beyond the scope of the VHDL
coverage in this book.

Larger registers can of course be modeled by defining the data inputs and
outputs to be vectors, and additional functions can also be included. For
example, Table 8-8 models a 16-bit register with three-state outputs and clock-
enable, output-enable, and clear inputs. An internal signal vector IQ is used to
hold the flip-flop outputs, and three-state outputs are defined and enabled as in
Section 5.6.4.

8.3 Sequential PLDs

8.3.1 Bipolar Sequential PLDs
The PAL16R8, shown in Figure 8-17, is representative of the first generation of
sequential PLDs, which used bipolar (TTL) technology. This device has eight
primary inputs, eight outputs, and common clock and output-enable inputs, and
fits in a 20-pin package.

The PAL16R8’s AND-OR array is exactly the same as the one found in the
PAL16L8 combinational PLD. However, the PAL16R8 has edge-triggered D
flip-flops between the AND-OR array and its eight outputs, O1–O8. All of the
flip-flops are connected to a common clock input, CLK, and change state on the
rising edge of the clock. Each flip-flop drives an output pin through a 3-state
buffer; the buffers have a common output-enable signal, OE_L. Notice that, like

SYNTHESIS
RESTRICTIONS

In Table 8-8, the first elsif statement theoretically could have included all of the
conditions needed to assign D to IQ. That is, it could have read “elsif (CLK'event)
and (CLK='1') and (CLKEN='1') then ...” instead of using a nested if statement
to check CLKEN. However, it was written as shown for a very pragmatic reason.

Only a subset of the VHDL language can be synthesized by the VHDL
compiler that was used to prepare this chapter; this is true of any VHDL compiler
today. In particular, use of the “event” attribute is limited to the form shown in the
example, and a few others, for detecting simple edge-triggered behavior. This gets
mapped into edge-triggered D flip-flops during synthesis. The nested IF statement
that checks CLKEN in the example leads to the synthesis of multiplexer logic on the
D inputs of these flip-flops.

PAL16R8

