
 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all
copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means,

without permission in writing by the publisher.
For exclusive use of adopters of the book Digital Design Principles and Practices, Fourth Edition, by John F. Wakerly,

ISBN 0-13-186389-4.

XSvhd.4Please see the VHDL program below or in the accompanying .zip file (if published by your instructor).
This program was kindly written and contributed by Xilinx application engineering, but it has not been further
checked for correctness and coding style

--**********************************

-- PROBLEM : WAKERLY - 8.54

-- FILES :

-- 8_54_top.vhd : top level file

-- 8_54_par2ser.vhd : parallel to serial converter

-- 8_54_control.vhd : control module

-- 8_54_shift_synch.vhd : 8 bit shift register

--

-- DESCRIPTION :

-- Creates a parallel to serial converter.

-- Data in is described as 8 x 8bit modules,

-- with a single 8 bit data bus that carries

-- data of the format given in Figure 8-55.

-- Each serial link has its own SYNCH(i) line;

-- the pulses should be staggered so SYNCH(i+1)

-- occurs 1 clock cycle after SYNCH(i).

--

-- Because of this, the load_synch line should

-- also be staggered so the data transmitted

-- over the serial link will correspond to its

-- associated SYNCH line.

--**********************************

-- library declarations

library IEEE;

use IEEE.std_logic_1164.all;

-- top level entity declaration

entity wak_8_54_top is

 port (

 data: in STD_LOGIC_VECTOR (63 downto 0);

 clock: in STD_LOGIC;

 synch: buffer STD_LOGIC_VECTOR (7 downto 0);

 sdata: out STD_LOGIC_VECTOR (7 downto 0)

);

end wak_8_54_top;

architecture wak_8_54_arch of wak_8_54_top is

signal load_shift_master: std_logic;

signal synch_master: std_logic;

signal load_shift: std_logic_vector (7 downto 0);

--component declarations

component par2ser is

 port (

 clock: in STD_LOGIC;

 data: in STD_LOGIC_VECTOR (7 downto 0);

 load_shift: in STD_LOGIC;

 sdata: out STD_LOGIC

);

end component;

3e8.54

 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all
copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means,

without permission in writing by the publisher.
For exclusive use of adopters of the book Digital Design Principles and Practices, Fourth Edition, by John F. Wakerly,

ISBN 0-13-186389-4.

component control is

 port (

 clock: in STD_LOGIC;

 load_shift: out STD_LOGIC;

 synch: out STD_LOGIC

);

end component;

component shift_synch is

 port (

 clock: in STD_LOGIC;

 synch_in: in STD_LOGIC;

 synch: buffer STD_LOGIC_VECTOR (7 downto 0)

);

end component;

begin

--component instantiations

S1: shift_synch port map (clock=>clock, synch_in=>synch_master, synch=>synch);

S2: shift_synch port map (clock=>clock, synch_in=>load_shift_master,

synch=>load_shift);

U1: par2ser port map (clock=>clock, data=>data(7 downto 0), load_shift=>load_shift(0),

sdata=>sdata(0));

U2: par2ser port map (clock=>clock, data=>data(15 downto 8),

load_shift=>load_shift(1), sdata=>sdata(1));

U3: par2ser port map (clock=>clock, data=>data(23 downto 16),

load_shift=>load_shift(2), sdata=>sdata(2));

U4: par2ser port map (clock=>clock, data=>data(31 downto 24),

load_shift=>load_shift(3), sdata=>sdata(3));

U5: par2ser port map (clock=>clock, data=>data(39 downto 32),

load_shift=>load_shift(4), sdata=>sdata(4));

U6: par2ser port map (clock=>clock, data=>data(47 downto 40),

load_shift=>load_shift(5), sdata=>sdata(5));

U7: par2ser port map (clock=>clock, data=>data(55 downto 48),

load_shift=>load_shift(6), sdata=>sdata(6));

U8: par2ser port map (clock=>clock, data=>data(63 downto 56),

load_shift=>load_shift(7), sdata=>sdata(7));

U9: control port map (clock=>clock, load_shift=>load_shift_master,

synch=>synch_master);

end wak_8_54_arch;

 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all
copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means,

without permission in writing by the publisher.
For exclusive use of adopters of the book Digital Design Principles and Practices, Fourth Edition, by John F. Wakerly,

ISBN 0-13-186389-4.

--*************************************

-- Basically an 8-bit shift register

-- takes the synch_in signal as an

-- input, and outputs an 8 bit signal,

-- each consecutive bit delayed by one

-- from the previous bit.

-- library declaration

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_arith.all;

use IEEE.std_logic_unsigned.all;

-- top level entity declaration

entity shift_synch is

 port (

 clock: in STD_LOGIC;

 synch_in: in STD_LOGIC;

 synch: buffer STD_LOGIC_VECTOR (7 downto 0)

);

end shift_synch;

architecture shift_synch_arch of shift_synch is

begin

-- low order synch signal is simply passed through

-- to output. all others are delayed.

 synch(0) <= synch_in;

 process(clock)

 begin

 if clock'event and clock='1' then

 for I in 0 to 6 loop

 synch(I+1) <= synch(I);

 end loop;

 end if;

 end process;

end shift_synch_arch;

 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all
copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means,

without permission in writing by the publisher.
For exclusive use of adopters of the book Digital Design Principles and Practices, Fourth Edition, by John F. Wakerly,

ISBN 0-13-186389-4.

--***************************************

-- Parallel to serial converter

-- Data is entered through 8 bit DATA bus

-- It is loaded into the register when

-- load_shift is low. If load_shift is

-- high, shift data serially out through sdata

-- library declarations

library IEEE;

use IEEE.std_logic_1164.all;

-- top level entity declaration

entity par2ser is

 port (

 clock: in STD_LOGIC;

 data: in STD_LOGIC_VECTOR (7 downto 0);

 load_shift: in STD_LOGIC;

 sdata: out STD_LOGIC

);

end par2ser;

architecture par2ser_arch of par2ser is

-- internal signal declaration

signal REG: STD_LOGIC_VECTOR(7 downto 0);

signal DIN: std_logic;

begin

-- DIN <= 0 will set the high order bit to be

-- zero once data is loaded in.

DIN <= '0';

-- process to create shift register

--accomplished by simply taking the DIN signal

--and concatenating on the end the previous

--6 high order bits.

process (clock)

 begin

 if clock'event and clock='1' then

 if load_shift = '0' then

 REG <= data;

 else

 REG <= DIN & REG(7 downto 1);

 end if;

 end if;

 sdata <= REG(0);

end process;

end par2ser_arch;

 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all
copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means,

without permission in writing by the publisher.
For exclusive use of adopters of the book Digital Design Principles and Practices, Fourth Edition, by John F. Wakerly,

ISBN 0-13-186389-4.

--******************************

-- Control logic

-- controls the loading of the

-- parallel to serial shift register

-- through the load_shift signal.

-- also, controls the synch word.

-- this occurs every 256 clock cycles.

--library declaration

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_arith.all;

use IEEE.std_logic_unsigned.all;

--top level entity declaration

entity control is

 port (

 clock: in STD_LOGIC;

 load_shift: out STD_LOGIC;

 synch: out STD_LOGIC

);

end control;

architecture control_arch of control is

--internal signal declaration

signal COUNT: STD_LOGIC_VECTOR(7 downto 0);

signal load: STD_LOGIC;

begin

load <= '0'; --define constant

process (clock)

 begin

 if clock'event and clock='1' then

 count <= count + 1;

 if count(2 downto 0) = "110" then

 load_shift <= load;

 else

 load_shift <= not load;

 end if;

 if count = 254 then

 synch <= '1';

 else

 synch <= '0';

 end if;

 end if;

end process;

end control_arch;

